Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764476

RESUMO

The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required. Recently, we have observed that Kuwanon-L, quinazolinones and thienopyrimidinones containing at least one polyphenol unit, effectively inhibited HIV-1 IN activity. Thus, in the present research, novel dihydroxyphenyl-based thienopyrimidinone derivatives were investigated for their LEDGF/p75-dependent IN inhibitory activity. Our findings indicated a close correlation between the position of the OH group on the phenyl moiety and IN inhibitory activity of these compounds. As catechol may be involved in cytotoxicity, its replacement by other aromatic scaffolds was also exploited. As a result, compounds 21-23, 25 and 26 with enhanced IN inhibitory activity provided good lead candidates, with 25 being the most selective for IN. Lastly, UV spectrometric experiments suggested a plausible allosteric mode of action, as none of the thienopirimidinones showed Mg2+ chelation properties otherwise typical of IN strand transfer inhibitors (INSTIs).

2.
Arch Pharm (Weinheim) ; 356(9): e2300256, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37452407

RESUMO

The increasing misuse of novel synthetic opioids (NSOs) represents a serious public health concern. In this regard, U-47700 (trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide) and related "U-compounds" emerged on recreational drug markets as synthetic substitutes for illicit heroin and constituents of counterfeit pain medications. While the pharmacology of U-compounds has been investigated using in vitro and in vivo methods, there is still a lack of understanding about the details of ligand-receptor interactions at the molecular level. To this end, we have developed a molecular modeling protocol based on docking and molecular dynamics simulations to assess the nature of ligand-receptor interactions for U-47700, N,N-didesmethyl U-47700, and U-50488 at the mu-opioid receptor (MOR) and kappa-opioid receptor (KOR). The evaluation of ligand-receptor and ligand-receptor-membrane interaction energies enabled the identification of subtle conformational shifts in the receptors induced by ligand binding. Interestingly, the removal of two key methyl groups from U-47700, to form N,N-didesmethyl U-47700, caused a loss of hydrogen bond contact with tryptophan (Trp)229, which may underlie the lower interaction energy and reduced MOR affinity for the compound. Taken together, our results are consistent with the reported biological findings for U-compounds and provide a molecular basis for the MOR selectivity of U-47700 and KOR selectivity of U-50488.


Assuntos
Receptores Opioides kappa , Receptores Opioides mu , Receptores Opioides kappa/química , Receptores Opioides kappa/metabolismo , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Ligantes , Relação Estrutura-Atividade , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/química
3.
Arch Toxicol ; 97(5): 1367-1384, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36853332

RESUMO

New psychoactive substances (NPS) are introduced on the illicit drug market at a rapid pace. Their molecular targets are often inadequately elucidated, which contributes to the delayed characterization of their pharmacological effects. Inspired by earlier findings, this study set out to investigate the µ opioid receptor (MOR) activation potential of a large set of psychedelics, substances which typically activate the serotonin (5-HT2A) receptor as their target receptor. We observed that some substances carrying the N-benzyl phenethylamine (NBOMe) structure activated MOR, as confirmed by both the NanoBiT® ßarr2 recruitment assay and the G protein-based AequoScreen® Ca2+ release assay. The use of two orthogonal systems proved beneficial as some aspecific, receptor independent effects were found for various analogs when using the Ca2+ release assay. The specific 'off-target' effects at MOR could be blocked by the opioid antagonist naloxone, suggesting that these NBOMes occupy the same common opioid binding pocket as conventional opioids. This was corroborated by molecular docking, which revealed the plausibility of multiple interactions of 25I-NBOMe with MOR, similar to those observed for opioids. Additionally, structure-activity relationship findings seen in vitro were rationalized in silico for two 25I-NBOMe isomers. Overall, as MOR activity of these psychedelics was only noticed at high concentrations, we consider it unlikely that for the tested compounds there will be a relevant opioid toxicity in vivo at physiologically relevant concentrations. However, small modifications to the original NBOMe structure may result in a panel of more efficacious and potent MOR agonists, potentially exhibiting a dual MOR/5-HT2A activation potential.


Assuntos
Alucinógenos , Alucinógenos/química , Serotonina , Analgésicos Opioides/farmacologia , Simulação de Acoplamento Molecular
4.
ACS Omega ; 8(2): 1957-1966, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687088

RESUMO

Gibberellin derivatives are a family of tetracyclic diterpenoid plant hormones used in agriculture as plant growth regulators included in the European Directive 91/414. In the pesticide peer review process and to assess their toxicological relevance and product chemical equivalence, the European Food Safety Authority (EFSA) highlighted data gaps such as the identification of hydrolysis products and unknown impurities. The aspect of impurity characterization and quantitation is challenging and requires the use of hyphenated analytical techniques. In this regard, we used an LC-QTOF/MS and NMR analysis for the characterization of gibberellic acid impurities found in technical products. Gibberellic acid impurities such as gibberellin A1 (GA 1 ), 3-isolactone gibberellic acid (iso-GA 3 ), gibberellenic acid, 1α,2α-epoxygibberellin A3 (2-epoxy- GA 3 ), and (1α,2ß,3α,4bß,10ß)-2,3,7-trihydroxy-1-methyl-8-methylenegibb-4-ene-1,10-dicarboxylic acid were identified and successfully characterized. Moreover, an in silico investigation on selected gibberellic acid impurities and derivatives and their interactions with a gibberellin insensitive dwarf1 (GID1) receptor has been carried out by means of induced fit docking (IFD), generalized-Born surface area (MM-GBSA), and metadynamics (MTD) experiments. A direct HPLC method with DAD and MS for the detection of gibberellic acid and its impurities in a technical sample has been developed. Moreover, by means of the in silico characterization of the GID1 receptor-binding pocket, we investigated the receptor affinity of the selected gibberellins, identifying compounds (2) and (4) as the most promising hit to lead compounds.

5.
Arch Pharm (Weinheim) ; 356(1): e2200432, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328777

RESUMO

The development of novel µ-opioid receptor (MOR) antagonists is one of the main objectives of drug discovery and development. Based on a simplified version of the morphinan scaffold, 3-[3-(phenalkylamino)cyclohexyl]phenol analogs were designed, synthesized, and evaluated for their MOR antagonist activity in vitro and in silico. At the highest concentrations, the compounds decreased by 52% to 75% DAMGO-induced GTPγS stimulation, suggesting that they acted as antagonists. Moreover, Extra-Precision Glide and Generalized-Born Surface Area experiments provided useful information on the nature of the ligand-receptor interactions, indicating a peculiar combination of C-1 stereochemistry and N-substitutions as feasibly essential for MOR-ligand complex stability. Interestingly, compound 9 showed the best experimental binding affinity, the highest antagonist activity, and the finest MOR-ligand complex stability. In silico experiments also revealed that the most promising stereoisomer (1R, 3R, 5S) 9 retained 1,3-cis configuration with phenol ring equatorial oriented. Further studies are needed to better characterize the pharmacodynamics and pharmacokinetic properties of these compounds.


Assuntos
Naltrexona , Antagonistas de Entorpecentes , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/química , Ligantes , Fenóis/farmacologia , Relação Estrutura-Atividade , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
6.
Neuropharmacology ; 221: 109263, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36154843

RESUMO

Recent trends of opioid abuse and related fatalities have highlighted the critical role of Novel Synthetic Opioids (NSOs). We studied the µ-opioid-like properties of isotonitazene (ITZ), metonitazene (MTZ), and piperidylthiambutene (PTB) using different approaches. In vitro studies showed that ITZ and MTZ displayed a higher potency in both rat membrane homogenates (EC50:0.99 and 19.1 nM, respectively) and CHO-MOR (EC50:0.71 and 10.0 nM, respectively) than [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO), with no difference in maximal efficacy (Emax) between DAMGO and NSOs. ITZ also has higher affinity (Ki:0.06 and 0.05 nM) at the MOR than DAMGO in both systems, whilst MTZ has higher affinity in CHO-MOR (Ki=0.23 nM) and similar affinity in rat cerebral cortex (Ki = 0.22 nM). PTB showed lower affinity and potency than DAMGO. In vivo, ITZ displayed higher analgesic potency than fentanyl and morphine (ED50:0.00156, 0.00578, 2.35 mg/kg iv, respectively); ITZ (0.01 mg/kg iv) and MTZ (0.03 mg/kg iv) reduced behavioral activity and increased dialysate dopamine (DA) in the NAc shell (max. about 200% and 170% over basal value, respectively. Notably, ITZ elicited an increase in DA comparable to that of higher dose of morphine (1 mg/kg iv), but higher than the same dose of fentanyl (0.01 mg/kg iv). In silico, induced fit docking (IFD) and metadynamic simulations (MTD) showed that binding modes and structural changes at the receptor, ligand stability, and the overall energy score of NSOs were consistent with the results of the biological assays.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Animais , Ratos , Analgésicos Opioides/farmacologia , Receptores Opioides mu/agonistas , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Morfina/farmacologia , Fentanila
7.
J Enzyme Inhib Med Chem ; 35(1): 1953-1963, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33143469

RESUMO

Bioisosteric replacement and scaffold hopping are powerful strategies in drug design useful for rationally modifying a hit compound towards novel lead therapeutic agents. Recently, we reported a series of thienopyrimidinones that compromise dynamics at the p66/p51 HIV-1 reverse transcriptase (RT)-associated Ribonuclease H (RNase H) dimer interface, thereby allosterically interrupting catalysis by altering the active site geometry. Although they exhibited good submicromolar activity, the isosteric replacement of the thiophene ring, a potential toxicophore, is warranted. Thus, in this article, the most active 2-(3,4-dihydroxyphenyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one 1 was selected as the hit scaffold and several isosteric substitutions of the thiophene ring were performed. A novel series of highly active RNase H allosteric quinazolinone inhibitors was thus obtained. To determine their target selectivity, they were tested against RT-associated RNA-dependent DNA polymerase (RDDP) and integrase (IN). Interestingly, none of the compounds were particularly active on (RDDP) but many displayed micromolar to submicromolar activity against IN.


Assuntos
Fármacos Anti-HIV/síntese química , Transcriptase Reversa do HIV/metabolismo , Pirimidinonas/química , Quinazolinonas/síntese química , Inibidores da Transcriptase Reversa/síntese química , Ribonuclease H do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Domínio Catalítico , Desenho de Fármacos , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Quinazolinonas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade , Tiofenos/química
8.
J Agric Food Chem ; 68(40): 11088-11095, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32924513

RESUMO

The present study reports on the powerful nematicidal activity of a series of electron-deficient alkynes against the root-knot nematode Meloidogyne incognita (Kofoid and White) Chitwood. Interestingly, we found that the conjugation of electron-withdrawing carbonyl groups to an alkyne triple bond was extremely proficient in inducing nematode paralysis and death. In particular, dimethylacetylenedicarboxylate (10), 3-butyn-2-one (1), and methyl propiolate (4), with EC50/48 h of 1.54 ± 0.16, 2.38 ± 0.31, and 2.83 ± 0.28 mg/L, respectively, were shown to be the best tested compounds. Earlier studies reported on the ability of alkynoic esters and alkynones to induce a chemoselective cysteine modification of unprotected peptides. Thus, also following our previous findings on the impairment of vacuolar-type proton translocating ATPase functionality by activated carbonyl derivatives, we speculate that the formation of a vinyl sulfide linkage might be responsible for the nematicidal activity of the presented electron-deficient alkynes.


Assuntos
Alcinos/química , Antinematódeos/química , Antinematódeos/farmacologia , Tylenchoidea/efeitos dos fármacos , Animais , Estrutura Molecular , Tylenchoidea/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...